Bonding

Туре	of interaction	Interaction energy w(r)		
Covalent, metallic	$(H H) H_2$ $(H O) H_2O$	Complicated, short range		
Charge-charge	$Q_1 \qquad Q_2$	$+Q_1Q_2/4\pi\varepsilon_0 r$ (Coulomb energy)		
Charge–dipole	$\frac{u}{Fixed dipole} Q$	$-Qu\cos\theta/4\pi\varepsilon_0 r^2$		
	Freely rotating	$-Q^2 u^2/6(4\pi\varepsilon_0)^2 k Tr^4$		
Dipole-dipole	Fixed u_1 θ_1 r θ_2 θ_2	$-u_1u_2[2\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2\cos\phi]/4\pi\varepsilon_0r^3$		
	Freely rotating	$-u_1^2 u_2^2/3 (4\pi\varepsilon_0)^2 k T r^6$ (Keesom energy)		
Charge-non-polar	Q a	$-Q^2\alpha/2(4\pi\varepsilon_0)^2r^4$		
Dipole–non-polar	$\frac{u}{Fixed} \theta r \alpha$	$-u^2\alpha(1+3\cos^2\theta)/2(4\pi\varepsilon_0)^2r^6$		
	$\frac{u}{\sqrt{r}}$ $\frac{r}{Rotating}$	$-u^2 \alpha / (4\pi \varepsilon_0)^2 r^6$ (Debye energy)		
Two non-polar molecules	α r α	$-\frac{3}{4} \frac{h v \alpha^2}{\left(4 \pi \varepsilon_0\right)^2 r^6}$ (London dispersion energy)		
Hydrogen bond	H O H O H	Complicated, short range, energy roughly proportional to $-1/r^2$		

^aw(r) is the interaction free energy or pair-potential (in J); Q, electric charge (C); u, electric dipole moment (C m); α , electric polarizibility (C² m² J⁻¹); r, distance between the centers of the interacting atoms or molecules (m); k, Boltzmann constant (1.381 × 10⁻²³ J K⁻¹); T, absolute temperature (K); h, Planck's constant (6.626 × 10⁻³⁴ J s); v, electronic absorption (ionization) frequency (s⁻¹); ε_0 , dielectric permittivity of free space (8.854 × 10⁻¹² C² J⁻¹ m⁻¹). The force F(r) is obtained by differentiating the energy w(r) with respect to distance r: F = -dw/dr. The stabilizing repulsive "Pauli Exclusion" interactions (not shown) usually follow an exponential function $w(r) \propto \exp(-r/r_0)$, but for simplicity they are usually modeled as power laws: $w(r) \propto +1/r^n$ (where n = 9-12).

Type of Bond	Substance	Bond Energy, kJ/mol	Melting Point, (°C)	Characteristics
Ionic	CaCl NaCl LiF CuF ₂ Al_2O_3	651 768 1008 2591 15,192	646 801 870 1360 3500	Low electrical conductivity, transparent, brittle, high melting point
Covalent	Ge GaAs Si SiC Diamond	315 ~315 353 1188 714	958 1238 1420 2600 3550	Low electrical conductivity, very hard, very high melting point
Metallic	Na Al Cu Fe W	109 311 340 407 844	97.5 660 1083 1535 3370	High electrical and thermal conductivity, easily deformable, opaque
van der Waals	Ne Ar CH ₄ Kr Cl ₂	2.5 7.6 10 12 31	-248.7 -189.4 -184 -157 -103	Weak binding, low melting and boiling points, very compressible
Hydrogen bonding	HF H ₂ O	29 50	$-92 \\ 0$	Higher melting point than van der Waals bonding, tendency to form groups of many molecules

The Born Energy

 When we talk about an ion in free space. we are not taking in to account the energy needed to form that ion. We have talked about the lonisation and electron affinities but there is a second way to define it, the Born Energy of an lon, here is the derivation. We could build this Ion by taking an atom and adding charge to it, the instantaneous charge on the Ion will be q and the charge we add will be dq

The change in energy dw, when we add charge dq. A is the ion radius

 $u = \int dw = \int_0^Q \frac{q dq}{4\pi\varepsilon\varepsilon_0 a}$

The total energy held in this ion is now This is the energy it takes to form the ion

 $dw = \frac{qdq}{4\pi\varepsilon\varepsilon_0 a}$

What happens when we move the ion around

 $\Delta u = \frac{Q^2}{8\pi\varepsilon_0 a} \left[\frac{1}{\varepsilon_1} - \frac{1}{\varepsilon_2} \right]$

If we move the ion between mediums of different relative permittivity. The energy changes.

If we move the ion from air (e=1) to water (e=78)Then the change in energy is on the order of 1000 KJ/mol Which is pretty significant.

This is about 40 times greater than KT.

Solubility

If we think about our lons in water some will have more energy than others. This Will be a Boltzmann distribution.

 $X_{S iS}$ the solubility of an electrolyte in water, or in any solvent, in mole-fraction units. Thus, for NaCl in water, where (a+)+(a-) = 0.276 nm, e= 78 at T = 298K, we expect very roughly $X_{S} = e^{-2.6} = 0.075$ in mole fraction unit, which may be compared with the experimental value of 0.11 mole/mole (360 g/liter).

Dipole Ion interaction

$$U_r = -\frac{Qq}{4\pi\varepsilon\varepsilon_0} \left[\frac{l}{AB} - \frac{l}{AC}\right]$$

note $U \rightarrow w$ (to stop confusion with dipole moment) : u=ql

$$w_r = -\frac{zeu\cos\theta}{4\pi\varepsilon\varepsilon_0 r^2}$$

Energy landscape

